

Provided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published

version when available.

Downloaded 2017-03-15T07:01:28Z

Some rights reserved. For more information, please see the item record link above.

Title People over process: key people challenges in agile
development

Author(s) Coyle, Sharon; Conboy, Kieran

Publication
Date 2010-09-02

Publication
Information

Conboy, K., Coyle, S., Wang, X., & Pikkarainen, M. People
Over Process: Key People Challenges in Agile Development.
Software, IEEE, PP(99), 1-1.

Publisher IEEE

Item record http://hdl.handle.net/10379/1419

https://aran.library.nuigalway.ie
http://creativecommons.org/licenses/by-nc-nd/3.0/ie/

 1

People Over Process:
 Key People Challenges in Agile Development

Kieran Conboy1, Sharon Coyle1, Xiaofeng Wang2, Minna Pikkarainen3

1National University of Ireland Galway,

Newcastle Rd., Galway, Ireland.
2 Lero Software Engineering Research Centre,

University of Limerick, Castletroy,
Limerick, Ireland

3 VTT Technical Research Centre of Finland.
P.O.Box 1100, FIN-90571, Oulu, Finland.

kieran.conboy@nuigalway.ie
sharon.coyle@nuigalway.ie

xiaofeng.wang@ul.ie
minna.pikkarainen@vtt.fi

 2

There is a common perception that, while there may be some ‘teething’ problems experienced
during the initial transition to agile, people are much happier, engaged and ultimately more
productive in these environments. This study shows that this belief may not always hold true,
identifying many serious ‘people’ challenges experienced by 17 large multinational
organisations, all using agile for more than three years. The cases provide an interesting
insight in that they involve instances where agile was implemented in a top-down manner
across the organisations or at least across business units. This is in contrast to most accounts
of agile which involve voluntary, bottom up adoption on small co-located teams developing
systems deemed to be suitable for agile development. The people issues uncovered include a
broad range of problems from recruitment of agile staff, to training, motivation and
performance evaluation among others. The paper will conclude with a set of actionable
recommendations as to how organisations can overcome these challenges, based on the better
practices uncovered in the cases studied.

Keywords: agile, adoption, methodologies, people factors

Introduction
While agile methods have been in use for quite a while, there are a number of reasons why it
is important to examine the ‘people issues’ implications of utilising agile approaches in this
context. Firstly, the growing popularity of agile methods is clearly evident and they “are fast
becoming the adopted methodology commercially” (Tan and Teo 2007, VersionOne 2009).
Secondly, the boundaries of agile are now changing, no longer restricted to small co-located
teams and increasingly applied in environments outside of their ‘comfort zone’ (e.g. Poole
and Huisman 2001, Drobka et al. 2004), thus presenting new people and human resource
management challenges. Finally, in the early years, the decision to adopt agile was typically
an insular, bottom up, voluntary one, where the project team could decide to embrace or
rebuke the transition ‘on its own terms’. Increasingly, suppliers, consultants, partners and
customers and even public sector bodies (Jamieson, Vinsen et al. 2006; UXResearch
September, 2008) are coercing the use of agile, either through a formal requirement to do so,
or through necessity to ensure inter-organisational process alignment. The increasing
prevalence of agile approaches, the lowering of traditional agile boundaries and growing
pressure to adopt agile, all contribute to the need for human resource departments and project
managers to address any associated skill and people challenges. An analysis of the literature
e.g. Nerur, Mahapatra et al. (2005) and Schuh (2004), shows that agile environments are
significantly different in context to environments where more traditional approaches are used
(Table 1), although very often the distinction between the two is not so black and white.

For all of these reasons, there is a need to identify the problems that the agile transition may
cause. While numerous studies document challenges in isolation, this study builds a
comprehensive list of the most important challenges and develops a set of recommendations
for how these might be addressed.

Project Component Traditional Agile
Control Process centric People centric
Management Style Command-and control Leadership-and-collaboration
Knowledge Management Explicit Tacit
Role Assignment Individual – favours

specialisation
Self-organising teams –
encourages role interchangeability

Communication Formal and only when
necessary

Informal and continuous

Customer’s Involvement Important, usually only at the
analysis phase of the project

Critical and continuous

Project Cycle Guided by tasks or activities Guided by product features

 3

Development Model Life cycle model (Waterfall,
Spiral, or some variation)

The evolutionary-delivery model

Desired Organisational
Form/Structure

Mechanistic (bureaucratic with
high formalisation)

Organic (flexible and participative
encouraging cooperative social
action)

Technology No restriction Favours object-oriented
technology

Team Location Predominately distributed Predominantly collocated
Team Size Often greater than 10 Usually less than 10
Continuous Learning Not frequently encouraged Embraced
Management Culture Command and Control Responsive
Team Participation Not compulsory Necessary
Project Planning Up-front Continuous
Feedback Mechanisms Not easily obtainable Usually numerous available
Documentation Substantial Minimal

Table 1: Contrasting differences between Traditional and Agile Approaches
(Adapted from Nerur, Mahapatra et al. (2005) and Schuh (2004))

THE RESEARCH PROCESS
A two-phased approach was used in this study. Firstly, we conducted focus group discussions
with software development executives, senior project managers and agility experts between
June and September 2008. In addition to identifying an initial set of challenges, this phase
acted as a test bed to evaluate the case study protocols used for the second phase. In the
second phase we conducted seventeen case studies (see Appendix A) using in-depth
interviews with senior personnel between October 2008 and January 2009. The cases include
organisations that have embraced agile development very effectively harvesting benefits such
as reduced costs, higher quality systems and more satisfied software development staff and
customers. The studies also include some organisations that have experienced significant
problems and even project failures directly attributable to the agile transition. We
intentionally selected cases with such opposing experiences, which allowed us to compare
and contrast, thus identifying the distinguishing skills and challenges related to agile
adoption. We now present the key people challenges identified across the cases, along with
practices uncovered to address these challenges. Where possible, we also try to identify how
prevalent each issue was across the cases studied. For example, we may indicate how 5 of 17
cases encountered a certain issue while 12 of 17 may encounter another.

KEY PEOPLE CHALLENGES EMERGING FROM THE STUDY

#1 Developer fear caused by transparency of skill deficiencies
Developer fear caused by the transparency of skill deficiency was noted across seventeen
companies studied. Interviewees outlined how procedures such as stand up meetings, an on-
site customer and the use of storyboards and whiteboards made developer shortcomings very
visible to the rest of the team, since these practices require direct and constant communication
and collaboration among team members. For example, storyboards track the status of user
stories and make a developer’s lack of progress very obvious. Whiteboards (used by agile
teams to communicate design issues), can also highlight the deficiency of technical and/or
communication skills of any one developer since they need to present their ideas in front of
their peers on a regular basis. In addition, continuous integration and automated testing means
that developers cannot hide poor, low quality code. Exposing weaknesses of developers
however can often be counter-productive. Eight teams spoke of incidents with developers
having low self-esteem who even if performing reasonably well, were often made to feel
inadequate in such a transparent environment. At the other end of the spectrum, full
transparency created unhealthy environments in four companies where egotism was present
and “exhibitionists” (Consultant, P), “show-offs” (Manager, L) and “bullies” (Consultant, P)
were involved. Repercussions of this included discomfort among some developers (16 of 17

 4

cases), hostility among developers (7 of 17 cases), and developers leaving the organisation (5
of 17 cases) or at least changing teams (14 of 17 cases). It is too simplistic to say that these
involved ‘weak’ developers. In fact, a very interesting finding was that “weakness is relative”
(Manager, L), and that some highly respected and high performing developers were made to
feel inadequate by those performing at an even higher level.

To address this challenge, developers need an environment where they feel safe to expose
their weaknesses. In Company C, all developers completed short forms on a fortnightly basis
where they could document any fears, issues or concerns they felt inappropriate for discussing
in an open forum. In Company D, listing problems at stand up meetings was voluntary for
new junior developers on one large project studied. In Companies B, D and M, junior or new
staff had a separate, lengthier stand up meeting with dedicated mentors. Developers also need
to be assured that they can get help to improve their skill set. In at least nine cases, pair
programming was used where weaker developers were paired with those more experienced,
and thus joint responsibility dissolved transparency of any potential weaknesses.

#2 The need for developers to be a ‘master of all trades’
Across all seventeen companies, it was found that boundaries between developer roles seem
to be less clear in an agile environment and that it was important that developers were
competent in a broad range of skills as opposed to being an expert in one.

“To be a successful agile [developer] you need to be a coder, a tester, an architect, a
customer, a quality assurance expert and a multitude of other things software-related”
(Manager, M).

As one manager in Company D described, rather than being a “jack of all trades, master of
none”, a developer in an agile team needs to be a “master of all trades”. This multi-faceted
skill set caused numerous problems. Firstly, almost all project managers found it difficult to
find developers that displayed all of the skills necessary for agile, either externally or within
their respective organisation. Training was also found to be more difficult. In four cases,
management sent all developers on the team to all training courses, incurring high expense. In
all four of these instances, prior to the adoption of agile, developers would only have received
training in niche areas directly related to their narrow team role. The fact that agile
encourages blended roles, is dependent on voluntary contributions and emphasises team as
opposed to individual performance, means that team members may become a ‘jack of all
trades’ but lack the opportunity to hone a smaller number of key skills e.g. Java certification.
As a result, in the cases studied, some team members felt they were being disadvantaged
when competing for promotion or jobs in the marketplace.

To address this challenge, a balance needs to be obtained between “master of all” and “master
of none”. Developers need to have broad knowledge on all aspects of software development
but also need to be specialised in certain areas and hone their skill set in these areas. As a
manager in Company G suggested: “an agile developer requires multiple skills but still needs
to maintain some degree of specialism”. In Companies F, L and M, however, the distinct
roles (such as tester, Java developer, database developer) were maintained, where it was
perceived that “master of all trades” may be a potential issue due to large team size or conflict
between developers.

#3 Increased reliance on social skills
Agile practices such as co-location, an on-site customer, stand up meetings, retrospectives and
pair programming were all commonly cited examples that increase social interaction, thus
heightening the need for social, communication and presentation skills. While the
development of social skills was generally seen by all as positive, some interesting concerns
and problems were raised through an analysis of interviewee responses. Firstly, it was evident

 5

across the majority of cases (15 of 17) that some personnel were technically very talented but
inherently weak in terms of communication and presentation skills. While all managers saw
the benefits of constant face-to-face communication, the fact that it was exacerbated to such a
degree in an agile environment was clearly diminishing the productivity of some key staff:

“When your star player outperforms the rest by 5 to 1, but is not getting the work done
because they are losing sleep and breaking into a sweat about standing in front of a
group, you need to rethink your approach, and change it for them” (Manager, F).

The customer-facing aspect of agile also caused significant problems in eight companies. It
was clear that certain people “you should never, ever put them in front of a client” (Director,
M). In fact “being a good communicator is one thing. Knowing what not to communicate is
much more important” (Manager, O). Managers cited examples of developers revealing to
customers politically sensitive and confidential information regarding contracts, salaries and
opinions regarding weaknesses within the development team. An intriguing finding of this
study is that, although both technical and social skills are required in an agile team,
developers with strong social skills might be disadvantaged when they are recruited in a
global software development context. A human resource manager described:

“When we were hiring home developers, they always presented and communicated
really well but you wondered if they really do have the technical skills they claim to
have. The developers in the offshore location presented and communicated terribly, but
we were always left feeling their technical skills are better than what was coming
across” (Manager, D).

One obvious solution to this challenge is the provision of social skill training. In Company K,
however, a more holistic approach was taken, and the development was built into a larger
training program. For each new graduate, a video recording was taken of their stand up
meeting presentations, which they would then bring with them to a required course for
graduates called ‘Communication and Presentation in Business’. Each graduate’s recording
would be watched and integrated into the course material, allowing each student to see how
their skills were improving as the weeks and months progressed. Another mediating solution
to the lack of social skills is to use appropriate documentation to facilitate communication,
even though agile methods place emphasis on minimising documentation. In Company E, a
manager found it was much harder to converse with less experienced developers without
supporting documentation. The investment in documentation may be merited where a high
percentage of inexperienced developers are involved.

#4 A lack of business knowledge among developers
Agile development involves constant, high tempo interaction between customers and
developers. The embedded nature of the customer’s role within the team increases interaction
with all team members, and so, according to many of those interviewed, an absence of basic
domain knowledge among developers becomes very obvious. A manager in Company L
captured the potential implications of this quite well:

“If they (the developers) don’t know the business basics, the customer loses confidence
in their overall ability, and their technical strengths may be ignored”.

Quite a few managers spoke of the potential damaging, “cancerous effect” (Manager, L) of
this problem, citing examples of customer indifference and disengagement because of the
resulting perception that “the team know nothing about our business so they won’t deliver
anything of value to our business” (Manager, M). This was regarded as a challenge by 12 of
the 17 companies studied and seemed to particularly problematic in seven companies where

 6

internationally distributed teams were involved. For example, one manager in Company K
recalled her experiences with a distributed project involving the offshore location:

“They had the technical skills in abundance but no business acumen whatsoever...
Getting the business angle across to the people (in the offshore location) was really
tough. If we can break it down into 1s and 0s they are fine, but anything qualitative is
very hard for them to work with. The transition to agile really caused problems with
this”.

Training in the business domain was seen as one possible solution. 6 of 17 companies held
training sessions on basic topics within the problem domain, such as accounting standards,
basic management accounting and finance and marketing principles. Typically, such training
went some way to addressing the issue but usually failed to consider the client-specific
knowledge required. Getting the customer organisation to run the training seemed to be quite
effective in solving this problem (2 of 17). In addition, running these in small modules on a
frequent, phased basis seemed to be more beneficial than instances where training was
delivered upfront on week one of the project before the team became actively engaged on
their project (1 of 17). Finally, making the sessions interactive (1 of 17) allowed the
developers to hone in on the niche areas they were finding particularly troublesome.

Moreover, almost all companies were making an attempt to resolve the root cause of the
problem by recruiting staff and graduates with a combination of IT and business knowledge,
and in three companies, actually recruiting domain experts. While the latter in particular
requires significant additional investment, all three managers believed the additional resource
was fully justified and significant value was added.

#5 The need to understand and learn values and principles of agile, not just the practices
It was evident in at least ten cases that while ‘on paper’ they were implementing agile
practices, the ultimate goals of agility were not being achieved. Company O in particular
captures this point. Two teams in Company O implemented agile at the same time,
participating in the same three day agile training session. As can be seen from Table 2 below,
both teams implemented the stand-up meeting and on-site customer practices but it is clear
that, while they technically implemented the same practices, they did not achieve the same
underlying goals. According to a manager in Company O, there was no single issue that
caused such a difference between the two projects, but rather “some intangible combination
of staff personality, management style, cultural issues and other factors”.

Practice Project 1 Project 2
Stand Up
Meetings

• Time wasted due to late arrivals
• Average 50 minutes, up to 1.5 hours
• No responsive action
• Highly critical atmosphere
• Some people (US-based) frozen out

• Time set to include everyone
• Time set aside for breakthrough

ideas
• Highly interactive
• Non-threatening

On-site
Customer

• ‘Highly passive’
• Not involved in spikes
• Only role was user story validation –

‘more of an editor’
• ‘Them and me’ mentality
• Averaged 4.3 days to give feedback on

user stories
• Attended 27 of 113 stand ups, 6 of 14

retrospectives

• Created brainstorming sessions
• Constantly hassled other

stakeholders (R&D,
manufacturing, accounting etc)
and organised meetings
continually

• Real-time involvement, live
reprioritisation

• Attended 43 of 45 stand ups

Table 2: Contrasting Implementation of Agile Practices

 7

Although formal training is seen as a typical solution to teach agile practices, it is not
sufficient for development teams to adequately embrace agile values and principles. Some
procedures identified across the companies studied included the provision of training and
attendance at agile conferences focusing on values and principles. With regard to training,
continuous and hands-on training was preferable to once-off training as a way to help
developers absorb and retain agile values and principles where a manager in Company L
claimed how “the real value came from continuous training”.

In addition, coaching can complement training to assist a team along the journey of agile-
transition. Generally across at least ten of the companies studied, senior team members played
the role of coach, whose primary goal was to drive the effort of retaining agile values and
principles within the team. However, the effect of coaching can also be obtained through
swapping developers across agile teams which ensures cross-team observation and validation
of agile practices, thus identifying “bad habits” (Company D). Periodically assessing the
agility of a team using an assessment framework based on a set of agile goals as opposed to
practice adherence may also help. Company A had adapted and dropped several agile
practices as a result of assessment practices.

#6 Lack of developer motivation to use agile methods
A lack of motivation to use agile methods among developers was a challenge encountered by
five companies studied. It was more prominent in companies where agile methods were
adopted in a top-down manner. A manager in Company G observed that “sometimes they
have the competence but are not convinced it (agile) will work”. In many of the cases studied,
there was a perception that process innovations like adopting agile are often viewed as overly
onerous, complex and time consuming.

In some organisations, mechanisms such as strong people involvement in the adoption
process (2 of 17), training (8 of 17) and sharing of agile development experiences (2 of 17)
were already in place to convince and motivate developers to adopt and use agile methods. A
manager of Company G indicated how they continuously collected information regarding
successful agile projects, in the form of multiple experience reports and then shared them
among different project teams. Five companies collected experiences from different teams
and customers and have gained valuable insights from them. According to various
respondents, the sharing of agile ‘success stories’ provided encouragement and belief.

#7 Implications of devolved decision-making
While devolved decision-making is a commonly cited aspect of agile, it has caused significant
problems among the companies studied: “People were picking tasks they shouldn’t have. It
was self-organising gone mad” (Manager, L). Devolved decision-making also means a
change for project managers in some cases causing problems as “project managers do not
know what their role is” (Manager, N). In Company L the manager cited anxiety of losing the
traditional power as a “problem among some managers”.

Several agile practices contributed to devolved decision making, including pair programming,
stand up meetings, regular retrospectives, and frequent informal communication. Sometimes
however, team and peer pressure can be too much. A practice discovered in two companies is
a 15-minute meeting between individual developers and the manager every week to ensure
that all developers have ample opportunity to communicate any views or concerns they have
which may be difficult for them to express in an open forum.

For actual team decision making processes, effective practices across the seventeen cases
included a democratic voting system to ensure everybody had an input into every decision. In
the decision making processes, as found in 3 of 17 cases, a project manager’s role was
adapted to that of a facilitator in an agile team who, in the end, made the actual decisions.

 8

Such role switching allows a project manager to act as a peer to the rest of the team
maintaining an open-mind, while at the same time preserving much decision making
responsibility which to a certain degree alleviates the anxiety of losing the traditional power
associated with managers.

#8 The need for agile-compliant performance evaluation
Across the seventeen cases studied, it was found that while agile methods advocate people
interaction, collaboration, mentoring, teamwork and transferring knowledge, there are many
issues associated with the performance evaluation of these activities. Team collaboration is
not easy to implement if performance evaluation and appraisal mechanisms are based on
individual performance. A manager in Company L tells of one of his team member’s
experience:

“We had one guy, who was the guru of the team. While he was happy with agile during
the year, he really felt demotivated when he was passed over for promotion. His
argument was he spent most of his time giving advice, pairing with weaker developers
and helping the team in stand-ups and retrospectives. In his eyes none of this had been
rewarded and as his manager I have to agree”.

In five cases the criteria for performance evaluation (particularly at junior levels) focused on
technical skills and the ability to follow direction whereas distinguishing factors in agile
development, such as social skills, creative thinking and self-organisation, were neglected. In
other instances, agile teams were largely evaluated according to traditional criteria and so
according to those interviewed, results of performance evaluation were often not indicative of
the true abilities of the team members. Meanwhile, performance evaluation of the on-site
customer seemed particularly problematic and highly contentious. In at least four instances,
the actual person doing the job felt aggrieved that they were not being rewarded properly:

“At the end of the day we can say the on-site customer is vital. In reality though, a
marketing person is rewarded for their marketing work, and an accountant for what
they do with the accounts. Time spent with a development team helping some other
department be a success does not help them much in their own reviews” (Manager, E).

Developing team-based performance evaluation with indicators tuned to agile attributes,
therefore, can foster team collaboration and use of agile practices. For example, 3 of the 17
interviewed companies have developed a bonus program that is team-based rather than
rewarding individuals. To make team-based performance evaluation more effective, team
members can act as evaluators as well as being evaluated. Six companies have introduced
“360º feedback” where all team members evaluate each other, as opposed to managers
appraising subordinates, thus ensuring that voluntary contributions and mentoring are
captured in the appraisal.

#9 Lack of agile-specific recruitment policies and suitably trained IT graduates
Due to a lack of agile-specific recruitment policies in place in most companies it can be
difficult to find the right people that are needed for agile development. A manager in
Company G described this challenge succinctly: “The policies that we use in recruiting
people do not really take into account agility. I do not even know how we should do it?” The
issue can be worsened by the fact that very few third level institutions incorporate agile
methods and skills to any significant degree. For instance a manager in Company L said:

“We cannot seem to find any graduates who have done anything hands on or even gone
beyond 1 or 2 lectures on agile methods”.

 9

Furthermore, according to those interviewed, degree programmes tend to lean heavily (if not
entirely) toward intense technical or business skills but rarely incorporate both.

3 of the 17 companies developed agile compliant recruiting practices. For example, in
Company L job applicants are required to refactor a piece of code and develop a set of user
stories and acceptance tests based on an interview with a fictional customer. In Company A
applicants are monitored during a 2 hour ‘iteration’ documenting user stories, estimating,
prioritising, developing, refactoring, testing with a stand up meeting after one hour and a
retrospective after two. This mode of recruiting quickly exposes the lack of technical and
social skills of the applicants. Instead, Company I does something similar but actually drops a
single applicant into a live team of developers as opposed to a mock environment (where the
whole team are applicants). All team members then evaluate the performance of the applicant.

RECOMMENDATIONS & CONCLUSIONS
A key output from this study is a set of practices that effective organisations are using to
overcome the challenges identified in this study. These are discussed throughout this article
but are summarised below. While success is a hard thing to measure, all of the practices
below were implemented effectively in at least one organisation, according to the respondents
in each respective case. Many of these were implemented effectively in multiple cases.

Challenges Recommendations
Developer fear caused by
transparency of skill
deficiencies

• Feedback outside stand ups, allowing the documentation of any fears, issues
or concerns inappropriate for discussion in open forum

• Stand up meetings voluntary for new junior developers
• Dedicated mentor for new staff
• Weaker developers paired with those who had more experience, taking joint

responsibility for requirements
The need for developers
to be a ‘master of all
trades’

• Use pair programming and pair rotation to distribute knowledge and
facilitate learning

• Encourage task self-assignment to allow developer work in different areas
and learn new skills

• Reintroduce specific roles when it is perceived beneficial to teams with e.g.
large team size, conflicts between developers

Increased reliance on
social skills

• Combine development and training program to provide customised training
materials on social skills, using developers’ own examples.

• Using proper documentation to back up communication
A lack of business
knowledge among
developers

• Customer company runs training sessions on basic topics within the
business domain and on company specific area(s)

• Provide small training modules (on a frequent basis), making it interactive
to allow developers acquire niche business knowledge required by the
project

• Recruit staff and graduates with a combination of IT and business
knowledge

The need to understand
and learn values and
principles of agile, not
just the practices

• Ensure multiple members get agile training or attend agile conferences
• Agile coaching and championing
• Ensure cross-team observation/validation of agile practices
• Assess agility in terms of agile values not practice adherence

Lack of developer
motivation to use agile
methods

• Try to have multiple ‘bought-in’ developers on each team
• Collecting and sharing successful adoption stories and positive experiences

Implications of devolved
decision-making

• Build a sharing and learning environment to empower team decision-
making

• Implement a democratic voting system
• Project manager plays the role of facilitator

The need for agile-
compliant performance
evaluation

• Performance evaluation needs to consider breadth of skills, not just depth
• Performance evaluation to apply much higher weighting for mentoring,

voluntary contributions etc

 10

• 360° feedback a must
Lack of agile-specific
recruitment policies and
suitably trained IT
graduates

• Develop specific recruiting practices tailored for agile methods to hire right
people

• Use team recruiting to find right person working in the team
• Put newly recruited graduates on agile projects to get hands on experience

Table 3: A summary of people challenges and recommendations to address them

We believe that the findings from this study can be used for a variety of purposes. The list of
issues can be used by organisations to assess the issues that they may be susceptible to when
considering whether or not to implement agile, or to determine what problems they may be
encountering if agile is already in place. This can be a very insightful exercise, given many of
the problems identified in this study exist ‘under the radar’ or are, as referred to by one
manager, acting “as silent killers”. The best practices used to overcome the challenges (listed
above) could be used as a starting point for developing a recruitment or training strategy. This
would be particularly appropriate where an organisation is undertaking a transition to agile. It
is important to note that such practices may reduce or at least surface people issues, but it is
unlikely to remove them altogether. It was clear from the many interviews conducted that the
management of people issues is an art more than a science, that the source of the problem can
be the organisation, the project, the team, or the individual and there is no technique that can
solve all problems. Also, it is clear that some organisations may not be in a position to
implement all of the recommendations due to cost, cultural issues, organisational structure
limitations or a variety of other reasons. Of course some of these issues may be largely
outside their control, with the lack of university graduates being a key example. Also, the
study was limited in that those interviewed were typically in managerial positions and so it
may be interesting to conduct a similar study ascertaining the views and experiences of
developers. Identifying contrasts and conflicting opinions between developers and managers
and reasons for those opinions may be insightful.

While exacerbated in an agile environment, not all of the issues raised in this study are new
and in reality many have plagued project managers, HR staff and trainers for many years. For
those interested in reading more about previous research on the issues raised in this study,
please refer to Appendix B.

 11

REFERENCES
Drobka, J., D. Noftz and R. Raghu (2004). "Piloting XP on Four Mission-Critical Projects."

IEEE Software, 21(6): 70-75.
Jamieson, D., K. Vinsen, et al. (2006). "Agile Procurement and Dynamic Value for Money to

facilitate Agile Software Projects." 32nd EUROMICRO Conference on Software
Engineering and Advanced Applications, Cavtat, Croatia.

Nerur, S., R. Mahapatra, et al. (2005). "Challenges of Migrating to Agile Methodologies."
Communications of the ACM 48(5): 72-78.

Poole, C. and J. Huisman (2001). "Using Extreme Programming in a Maintenance
Environment." IEEE Software, 18(6): 42-50.

Schuh, P. (2004). Integrating Agile Development in the Real World, Charles River Media Inc.
Tan, C. H. and H. H. Teo (2007). "Training Future Software Developers to Acquire Agile

Development Skills." Communications of the ACM 50(12): 97-98.
UXResearch September (2008). "DEEWR Tender Win." From

http://www.uxresearch.com.au/news/deewr-tender-win/ (last accessed 20 January,
2010)

VersionOne (2009). “State of Agile Survey, fourth annual survey.”
http://www.versionone.com/pdf/2009_State_of_Agile_Development_Survey_Results
.pdf (last accessed 20 January, 2010).

