
www.dell.com/powersolutions POWER SOLUTIONS 65

ENTERPRISE CLUSTER ENVIRONMENT

Recommendations and Techniques for

Scaling Microsoft SQL Server
To support many more users, a database must easily scale out as well as up. This
article describes techniques and strategies for scaling out the Microsoft SQL Server
relational database management system (RDBMS) and provides scenarios illustrating
scale-out deployments.

Most enterprise applications today run on a Microsoft®

Windows®, UNIX®, or Linux® operating system–based

relational database management system (RDBMS), such

as Microsoft SQL Server 2000. Scalability has become a

critical factor in the success of these applications as the

number of users relying on them has grown. 

The Internet also has profoundly affected the need for

scalability. Once exposed to just a few thousand users, the

data in many corporate databases now must be accessed by

tens of thousands of concurrent users through e-commerce

sites, Web services, and other Internet-based applications.

Scaling databases to support these users is a major con-

cern for both database software developers and database

administrators.

Differences between scaling up and scaling out
When database performance worsens, administrators

typically address the problem first by scaling up—that is,

by trying to optimize performance in the current envi-

ronment. Because many database applications have

inefficient designs or become inefficient as their usage

patterns change, finding and improving the areas of

inefficiency can yield significant performance benefits.

Fine-tuning the database server can help perform more

queries, handle more users, and run more efficiently. 

SQL Server scales up fairly well—to a point. In one

real-world scenario, for example, a company’s database

required a nine-table join to look up a single customer

address. Selectively denormalizing the tables and apply-

ing strategic indexes allowed SQL Server to execute

address queries much faster. Because address lookups

were a common task for this company, even a minor

per-query improvement significantly enhanced overall

server performance.

Unfortunately, scaling up is limited in how much it

can improve an application’s performance and ability to

support more users. For

example, take a database

whose sole function is to

perform a single, simple

query—no joins, no need

for indexes. A high-

performance SQL Server

computer—for example,

a quad-processor server

with 4 GB of RAM and

BY DON JONES

When database 

performance worsens,

administrators typically

address the problem 

first by scaling up.



several fast hard drives—could probably support tens of thou-

sands of users who must concurrently execute that one query.

However, this server might not be able to support a million

users. In this situation, scaling up—fine-tuning—would be insuf-

ficient, because such a simple query leaves little room for

improvement. To begin supporting many more users, scaling out

is a better solution.

Scale-out strategies redistribute workloads
Scaling out SQL Server, a more complicated process than scaling

up, requires splitting a database into various pieces, then moving

the pieces to different, independent SQL Server computers. The

grocery-store checkout line presents a good analogy for compar-

ing the two processes. In a busy grocery store with only one

checkout lane open, a long line of unhappy customers would

quickly materialize.

A scale-up approach—installing faster barcode scanners, requir-

ing everyone to use a credit card instead of writing a check, or hiring

a faster cashier—can make the checkout process itself more

efficient. These measures might improve the situation, but not solve

the problem; customers would move through the line more quickly,

but they still would have only one checkout lane.

A better solution would be to scale out—in this analogy, by open-

ing additional checkout lanes. Customers could now be processed in

parallel by completely independent lanes. To make the analogy closer

to a database scale-out scenario, the grocery store could have spe-

cialized lanes: one that expedites processing (customers purchasing

15 items or fewer), and another that focuses on produce, which often

takes longer because it must be weighed and not simply scanned. 

An ideal, if unrealistic, solution might be to retain a single lane

for each customer, but to divide each customer’s purchases into

categories to be handled by specialists: produce, meat, boxed items,

and so forth. Specialized cashiers could minimize their interactions

with each other, keeping the process moving speedily along.

Although unworkable in a real grocery store, this solution illus-

trates a real-world model for scaling out databases.

General strategies for scaling out databases 
Database managers can consider two basic scale-out strategies for

distributing the workload of a database across multiple servers. Most

major RDBMS platforms, including SQL Server, provide the means

to make these strategies possible. 

SQL Server farms replicate the database
The first approach simply adds more servers. Consider a scenario

in which a company has an office in New York and one in Los

Angeles. Both offices have several thousand users who frequently

query data from a corporate application, such as an order-

processing database. Users rarely change data in the system, but

they frequently add new data. In

this scenario, users in both offices

are overloading the database.

Even if the database is a well-

written multitier application, pro-

cessing all the information on

only one database server at the

back end can create a bottleneck.

Figure 1 illustrates one way to

address the problem: a SQL Server

farm. In this technique, two data-

base servers each contain a com-

plete copy of the database. Each

office houses one server, and the

users in each office connect only

to their local server. Changes and

new records are replicated between the servers by using SQL Server

replication. To avoid conflicts when adding new records, each office

might, for example, be assigned a unique range of order ID num-

bers, ensuring that new records created in either office can be

uniquely identified across both copies of the database.

This strategy is perhaps the simplest means of scaling out SQL

Server. Although replication is not easy to set up and maintain on

SQL Server, neither is it extremely difficult. The strategy works well

even with many servers and copies of the database.

However, the data replication strategy does incur some draw-

backs, especially latency. Neither copy of the database will ever

match the other exactly. As new records are added to each copy,

time elapses before replication begins. With only two servers in the

company, each server might be as much as an hour out of sync with

the other, depending upon how administrators set up replication. 

Adding more servers, however, involves difficult replication

decisions. For another scenario, consider the six-office setup depicted

in Figure 2. Each of the six offices has its own independent SQL

Server system—an excellent design for scalability. However, latency

could be very high. If each SQL Server replicates with its partners

just once every hour, then total system latency could be three hours

or more. A change made in the Los Angeles office would replicate

ENTERPRISE CLUSTER ENVIRONMENT

POWER SOLUTIONS November 200366

Workstations

Server Server

Workstations
Replication

Los Angeles office New York office

Figure 1. SQL Server farm

Scaling out SQL Server, a

more complicated process

than scaling up, requires

splitting a database into

various pieces, then

moving the pieces to 

different, independent

SQL Server computers.



to New York and Las Vegas in about an hour. An hour later, the

change would reach London and Denver. An hour later, it would

arrive in Orlando. Given such high latency, the entire system would

probably never be synchronized completely.

Administrators can reduce latency, but at a performance cost.

If each of the six servers replicated with each of the other five

servers, the system could converge, or be universally in sync, about

once an hour (assuming again that replication occurred every

hour). Figure 3 shows such a fully enmeshed design.

In this fully enmeshed design, each server must maintain repli-

cation agreements with five other servers, and must replicate with

each server every hour. This much replication, particularly in a

busy database application, would likely slow response so much

that the performance gain achieved by creating a server farm would

be lost. Each office might require two servers just to maintain repli-

cation and meet users’ needs. Although fairly easy to implement,

the server farm technique has a point of diminishing returns.

Distributed partitioned databases move tasks to different servers
A more sophisticated strategy—but one that is also more difficult to

implement—involves partitioning the database and moving the

pieces to different servers. Unlike the simplified order-processing

database example previously discussed in “SQL Server farms repli-

cate the database,” most real-world database applications tend to rely

on an equal mix of data reading and data writing. For example, an

order-processing application might include a product catalog that is

largely read only, a customer-order database that is write heavy, and

tables containing supplier information that are equally read-write.

These three closely related data-

base segments—catalog, orders,

and supplier tables—are fairly

task-independent: diverse users

within the organization tend to use

each database differently. Mer-

chandisers might write to the cat-

alog but do little else. Customer

service representatives might read

the catalog and write to the orders

tables but never access the sup-

plier tables. The warehouse staff

might read the catalog and read from and write to the supplier

tables. This division of labor indicates where the database itself can

be split, as Figure 4 illustrates.

Administrators can use two basic approaches to implementing

the distributed partitioned database strategy. The first is to modify

the client application so that it understands the division of the

database across multiple servers. Straightforward yet somewhat

time-consuming, this solution does not work well for the long

term. Future changes to the application could result in additional

divisions, which would in turn require additional reprogramming.

A better approach is to program the client application to use

stored procedures, views, and other server-side objects—an ordi-

nary best practice for a client-server application—so that the client

application need not be aware of the physical location of the data.

SQL Server offers different techniques, such as distributed partitioned

views, to handle this setup.

ENTERPRISE CLUSTER ENVIRONMENT

www.dell.com/powersolutions POWER SOLUTIONS 67

New York

Los Angeles

Las Vegas

Denver

Orlando

London

Figure 3. Fully enmeshed six-server farm

Rep
lication

Replication

Re
pli

ca
tio

n

Replication

Replication Replication

New York

Los Angeles

Las Vegas

Denver

Orlando

London

Figure 2. Six-server farm

Scaling out SQL Server

can offer benefits

not only in improved

application performance,

but also in greater redun-

dancy and availability.



Scale-out techniques using SQL Server and Windows
SQL Server and Windows offer several techniques to enable

scaling out, including SQL Server–specific features such as dis-

tributed databases and views and Windows-specific functions

such as Windows Clustering.

Distributed partitioned views help create virtual tables 
SQL Server distributed partitioned views allow developers to create

views that combine tables from multiple SQL Server computers into

a single virtual table. This method logically divides a database across

multiple SQL Server computers. Rather than reprogramming client

applications to understand the division of the databases, develop-

ers can create distributed views that present a virtualized version of

them. These tables appear to client applications as if they were on

a single server. Meanwhile, SQL Server combines the tables, which

are spread across multiple servers, into a single view.

Distributed views are a powerful tool in scaling out. They

allow developers to redistribute

databases transparently to the

end users and their business appli-

cations. As long as client applica-

tions are designed to use the

views rather than the direct tables,

the tables themselves can be

rearranged and scaled out as nec-

essary without the client applica-

tion being aware of any change.

The workload required to

create and present the view to

client computers is shared by all

servers participating in the view—

or by all servers in the federation.

SQL Server 2000 is the first

version of SQL Server to make a

significant improvement to this

approach, because the data within the views can be updated by

client applications as if the data were in a regular table. The updates

are cascaded back to the necessary participant servers.

Replication of distributed partitioned databases reduces latency 
Another scale-out approach involves partitioning a database across

multiple servers and then replicating the database copies. Like the six-

server order-processing farm described earlier, each server contains

a complete database. In this method, each server is responsible for a

different set of rows. SQL Server replication is used to keep each copy

of the database updated. This method allows each server to imme-

diately access its own rows and provides reasonably low latency for

access to rows created on other servers. Client applications often

must be modified to understand this structure. In many partitioned

database schemes, data rows may be modified only on the server that

owns them, with the changes then being moved to the other servers

through replication. Client applications must know how to determine

which server owns a row before making modifications.

Windows Clustering facilitates high availability and scalability 
Besides improving performance, Windows Clustering can help avoid

the risk of server failure when scaling out. For example, a two-node

active/active cluster has two independent SQL Server servers. These

nodes can be configured as a server farm, in which each server con-

tains a complete copy of the database and users are distributed

between them. An alternative is a distributed database architecture,

in which each server contains one logical half of the entire database.

In either architecture, a failure of one server is not catastrophic

because Windows Clustering enables the other server to transpar-

ently take over and act as two servers.

Over-engineering is the key to a successful active/active

cluster. Each node should be designed to operate at a maximum of

60 percent capacity. If one node fails, the other node can begin run-

ning at 100 percent capacity, incurring only about a 20 percent loss

of efficiency. Still, performance is generally well within an accept-

able range considering that, after failover, applications must run on

half as much hardware.

Setting up clusters can be extremely complex. In Windows

Clustering, the software is not difficult to use, but the underlying hard-

ware must be absolutely compatible with Windows Clustering—and

most hardware vendors have exacting requirements for cluster setups.

Purchasing preconfigured clusters from a major server vendor, such

as Dell, can help simplify cluster setup. The cluster is designed to be

ready to run on delivery, and both the vendor and Microsoft can pro-

vide cluster-specific technical support if necessary.

High-performance storage to boost SQL Server response
High-performance storage is an often-overlooked performance

benefit for SQL Server—particularly external storage area networks

ENTERPRISE CLUSTER ENVIRONMENT

POWER SOLUTIONS November 200368

ServerServer Server

Catalog Orders Suppliers

Merchandising Customer service Warehouse

Write Write Read/write

Read

Read

Figure 4. Identifying task-based divisions in the database design

SQL Server and Windows

offer several techniques

to enable scaling out,

including SQL Server–

specific features such 

as distributed databases 

and views and Windows-

specific functions 

such as clustering.



(SANs) that rely on Fibre Channel technology rather than traditional

SCSI disk subsystems. Because high-performance storage enables an

existing server to handle a greater workload, it constitutes an exam-

ple of scaling up rather than out.

SQL Server is a highly disk-intensive application. Although SQL

Server includes effective memory-based caching techniques to reduce

disk reads and writes, database operations require significant data

traffic between a server’s disks and its memory. The more quickly

the disk subsystem can move data, the faster SQL Server will per-

form. Some industry estimates suggest that 75 percent of idle time

in SQL Server results from waiting for the disk subsystem to deliver

data. Improving the speed of the disk subsystem can markedly

improve overall SQL Server performance.

Moving to additional RAID-5 arrays on traditional copper SCSI

connections is a simple way to improve disk space. However, high-

speed Fibre Channel SANs offer the best speed, as well as myriad

innovative recovery and redundancy options—making them a safer

place to store enterprise data.

Scale-out strategy for improving SQL Server performance, 
redundancy, and availability 
As applications grow to support tens and hundreds of thousands

of users, scaling is becoming a mission-critical activity. Scaling up—

improving efficiency by fine-tuning queries, indexes, and so

forth—helps IT organizations do more with less. However, scaling

up can require high administrative overhead and may have limited

effect. Administrators might spend two weeks to achieve a 1 per-

cent performance gain, an improvement that cannot compare to the

much higher gains promised by a well-planned scale-out design.

Although seldom considered as a target for scaling out, SQL

Server is well suited to this strategy, in both server farm and more

sophisticated distributed database approaches. Scaling out SQL

Server can offer benefits not only in improved application perfor-

mance, but also in greater redundancy and availability.

Don Jones is a founding partner of BrainCore.Net, and has more than a decade of experi-

ence in the IT industry. Don’s current focus is on high-end enterprise planning, including data

availability and security design.

ENTERPRISE CLUSTER ENVIRONMENT

www.dell.com/powersolutions POWER SOLUTIONS 69

Databases can be inefficient for several reasons:

• Poor design: Many application developers do not excel at database
design. Some, for example, have been taught to fully normalize the
database at all costs, which can lead to significantly degraded
performance. Sometimes project schedules do not permit enough
design iterations before the database must be locked down and soft-
ware development begins. In some cases, the application itself is
not designed well, resulting in an incomplete database design that
must be patched and expanded as the application is created.

• Change: An application used in a way unintended by its designers
can reduce efficiency. The application may have expanded and
begun suffering from “scope creep”—the growth or change of project
requirements. In this case, redesigning the application from the
beginning to meet current business needs may be the best solution
to database inefficiency.

• Growth: Databases are designed for a specific data volume; once
that volume is exceeded, queries may not work as they were

intended. Indexes might need to be redesigned or at least rebuilt.
Queries that were intended to return a few dozen rows may now
return thousands, affecting the underlying design of the application
and the way data is handled.

These problems are difficult to address in a live, production appli-
cation. Scaling up tends to have a limited effect. Although developers
may agree that the application’s design is inefficient, companies are
reluctant to destroy a serviceable application and start over without
serious consideration.

Scaling out can offer a less drastic solution. Although scaling out
requires considerable work on the server side, it may not require much more
than minor revisions to client-side code, making the project approachable
without completely re-architecting the application. Scaling out might not be
the most elegant or efficient way to improve performance, but it does help
alleviate many database and application design flaws. It also can allow
companies to grow their database applications without needing to redesign
them from the beginning.

FOR MORE INFORMATION

This article is based on an excerpt from the free eBook The Definitive Guide to
Scaling Out SQL Server (Realtimepublishers.com) by Don Jones, available at
http://www.dell.com/sql/ebook

Dell|Microsoft SQL Server 2000: http://www.dell.com/us/en/esg/topics/
products_software_pedge_001_database.htm

Microsoft SQL Server: http://www.microsoft.com/sql

UNDERSTANDING DATABASE INEFFICIENCY 


